Nanoparticle and microparticle-based systems for enhanced oral insulin delivery: A systematic review and meta-analysis | Journal of Nanobiotechnology


  • Disease, N.I.o.D.a.D.a.K. What is diabetes? 2023 [cited 2023 October 20]; Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes.

  • Zhang S, Staples AE. Microfluidic-based systems for the management of diabetes. Drug Deliv Transl Res. 2024;14:2989.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saeedi P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2019;157: 107843.

    Article 
    PubMed 

    Google Scholar
     

  • Saeedi P, et al. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2020;162: 108086.

    Article 
    PubMed 

    Google Scholar
     

  • Mobasseri M, et al. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10(2):98–115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collaborators GD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: asystematic analysis for the Global Burden of Disease Study 2021. The Lancet. 2023;402(10397):31.


    Google Scholar
     

  • Di Pietrantonio N, et al. Role of epigenetics and metabolomics in predicting endothelial dysfunction in type 2 diabetes. Adv Biol (Weinh). 2023;7(9): e2300172.

    Article 
    PubMed 

    Google Scholar
     

  • Nørlev JTD, et al. Quantification of insulin adherence in adults with insulin-treated type 2 diabetes: a systematic review. Diabetes Metab Syndr. 2023;17(12): 102908.

    Article 
    PubMed 

    Google Scholar
     

  • Li SH, et al. Metal-polyphenol microgels for oral delivery of puerarin to alleviate the onset of diabetes. Drug Deliv Transl Res. 2024;14(3):757–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan SY, et al. Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 2019;13(1):364–72.

    Article 
    PubMed 

    Google Scholar
     

  • Yoon J-W, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002;8(2):6.

    Article 

    Google Scholar
     

  • Kono TM, et al. Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: analysis of hASC-derived paracrine effectors. Stem Cells. 2014;32(7):1831–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sher EK, et al. Novel therapeutical approaches based on neurobiological and genetic strategies for diabetic polyneuropathy—a review. Diabetes Metab Syndr. 2023;17(11): 102901.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Maalouf IR, Capoccia K, Priefer R. Non-invasive ways of administering insulin. Diabetes Metab Syndr. 2022;16(4): 102478.

    Article 
    PubMed 

    Google Scholar
     

  • Lopes M, et al. Why most oral insulin formulations do not reach clinical trials. Ther Deliv. 2015;6(8):973–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora S, et al. Early detection of cutaneous complications of insulin therapy in type 1 and type 2 diabetes mellitus. Prim Care Diabetes. 2021;15(5):859–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson T, Kerr D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am J Clin Dermatol. 2003;4(10):661–7.

    Article 
    PubMed 

    Google Scholar
     

  • Hammad RW, et al. Cubosomal functionalized block copolymer platform for dual delivery of linagliptin and empagliflozin: recent advances in synergistic strategies for maximizing control of high-risk type II diabetes. Drug Deliv Transl Res. 2024;14(3):678–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trief PM, et al. Incorrect insulin administration: a problem that warrants attention. Clin Diabetes. 2016;34(1):25–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet J. 2018;391(10138):2449–62.

    Article 

    Google Scholar
     

  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article 
    PubMed 

    Google Scholar
     

  • Pandey V, et al. Chapter 18—excipient toxicity and safety. In: Tekade RK, editor., et al., Pharmacokinetics and toxicokinetic considerations. New York: Academic Press; 2022. p. 487–511.

    Chapter 

    Google Scholar
     

  • Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Curr Pathobiol Rep. 2021;9(4):133–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gil AG, et al. Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem Toxicol. 2017;106(Pt A):477–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harugade A, Sherje A, Pethe A. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React Funct Polym. 2023;1991.

  • Wang W, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, et al. Chitosan-microcapsulated insulin alleviates mesenteric microcirculation dysfunction via modulating COX-2 and VCAM-1 expression in rats with diabetes mellitus. Int J Nanomed. 2018;13:6829–37.

    Article 
    CAS 

    Google Scholar
     

  • Tian H, et al. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater. 2018;7(17): e1800285.

    Article 
    PubMed 

    Google Scholar
     

  • Agrawal A, et al. Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015;5:105179–93.

    Article 
    CAS 

    Google Scholar
     

  • Papakostidis C, Giannoudis PV. Meta-analysis. What have we learned? Injury. 2023;54(Suppl 3):S30–4.

    Article 
    PubMed 

    Google Scholar
     

  • Wang XM, et al. A brief introduction of meta-analyses in clinical practice and research. J Gene Med. 2021;23(5): e3312.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng T, et al. Rational design of oral delivery nanosystems for hypoglycemic peptides. Nano Today. 2023;53: 102031.

    Article 
    CAS 

    Google Scholar
     

  • Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgan RL, et al. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121(Pt 1):1027–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyatt GH, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64(4):395–400.

    Article 
    PubMed 

    Google Scholar
     

  • Ouzzani M, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiloke C, Phulukdaree A, Chuturgoon AA. The chemotherapeutic potential of gold nanoparticles against human carcinomas: a review. In: Andrew W, editor. Nanoarchitectonics for smart delivery and drug targeting. New York: Elsevier; 2016. p. 783–811.

    Chapter 

    Google Scholar
     

  • Badwaik H, et al. Phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical aspects. In: Studies in natural products chemistry. New York: Elsevier; 2019. p. 415–60.


    Google Scholar
     

  • ImageJ. [cited 01/07/2024; Available from: https://imagej.net/ij/.

  • The jamovi project. jamovi (Version 2.3) [Computer Software]. Available from: https://www.jamovi.org.

  • Cochrane.org. Chapter 10: Analysing data and undertaking meta-analyses. 2024; Available from: https://training.cochrane.org/handbook/current/chapter-10.

  • Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107(44):776–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeturu K, Srinivasa Rao ASR, Rao CR. Chapter 3—Machine learning algorithms, applications, and practices in data science. In: Principles and methods for data science. New York: Elsevier; 2020. p. 81–206.

    Chapter 

    Google Scholar
     

  • Hooijmans CR, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raguraman V, Jayasri MA, Suthindhiran K. Magnetosome mediated oral Insulin delivery and its possible use in diabetes management. J Mater Sci Mater Med. 2020;31(8):75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, et al. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Theranostics. 2021;11(9):4452–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, et al. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):278–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng J, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo H, et al. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin delivery. Polym Chem. 2016;7:3189–99.

    Article 
    CAS 

    Google Scholar
     

  • Sheng J, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun S, et al. Multifunctional composite microcapsules for oral delivery of insulin. Int J Mol Sci. 2016;18(1):54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim KS, et al. Immense insulin intestinal uptake and lymphatic transport using bile acid conjugated partially uncapped liposome. Mol Pharm. 2018;15(10):4756–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim JU, et al. Optimization of phytic acid-crosslinked chitosan microspheres for oral insulin delivery using response surface methodology. Int J Pharm. 2020;588: 119736.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alibolandi M, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J Control Release. 2016;227:58–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Remawi M, et al. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm Dev Technol. 2017;22(3):390–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaral M, et al. How can biomolecules improve mucoadhesion of oral insulin? A comprehensive insight using. Biomolecules. 2020;10(5):675.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai Y, et al. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. J Mater Chem B. 2020;8(13):2636–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balabushevich NG, et al. Layer-by-layer adsorption of biopolyelectrolytes as a universal approach to fabrication of protein-loaded microparticles. Moscow University Chemistry Bulletin. 2014.

  • Chen T, et al. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul. 2019;36(1):96–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, et al. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 2019;562:23–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho HJ, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsayed AM, et al. Low molecular weight chitosan–insulin complexes solubilized in a mixture of self-assembled labrosol and plurol oleaque and their glucose reduction activity in rats. Mar Drugs. 2018;16(1):32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Leithy ES, Abdel-Bar HM, Ali RA. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm. 2019;571: 118708.

    Article 
    PubMed 

    Google Scholar
     

  • Fang Y, et al. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: optimized preparation, characterization, and in vivo evaluation. J Pharm Sci. 2019;108(9):2994–3002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Y, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He H, et al. VB12-coated Gel-Core-SLN containing insulin: another way to improve oral absorption. Int J Pharm. 2015;493(1–2):451–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Z, et al. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale. 2018;10(7):3307–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Wang J, Qiu L. Polymeric nano-vesicles via intermolecular action to load and orally deliver insulin with enhanced hypoglycemic effect. RSC Adv. 2020;10(13):7887–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inchaurraga L, et al. Zein-based nanoparticles for the oral delivery of insulin. Drug Deliv Transl Res. 2020;10(6):1601–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, et al. Chitosan modified cerasomes incorporating poly (vinyl pyrrolidone) for oral insulin delivery. RSC Adv. 2014;4:58137–44.

    Article 
    CAS 

    Google Scholar
     

  • Kassem M, et al. Formulation, characterization and in vivo application of oral insulin nanotechnology using different biodegradable polymers: advanced drug delivery system. Int J Pharm Sci Res. 2018;9:3664–77.

    CAS 

    Google Scholar
     

  • Kumari Y, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2020;149:976–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JH, et al. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug. Biomaterials. 2016;103:160–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee SH, et al. Enhanced oral delivery of insulin via the colon-targeted nanocomposite system of organoclay/glycol chitosan/Eudragit. J Nanobiotechnol. 2020;18(1):104.

    Article 
    CAS 

    Google Scholar
     

  • Li X, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, et al. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm Sin B. 2022;12(3):1460–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, et al. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomed. 2016;11:761–9.

    Article 
    CAS 

    Google Scholar
     

  • Liu C, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv. 2016;23(6):2015–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomater Sci Eng. 2018;4(8):2889–902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu M, et al. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6(4):593–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors. Biomater Sci. 2021;9(8):2903–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes M, et al. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm. 2017;113:88–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-López AL, et al. Arabinoxylans-based oral insulin delivery system targeting the colon: simulation in a human intestinal microbial ecosystem and evaluation in diabetic rats. Pharmaceuticals (Basel). 2022;15(9):1062.

    Article 
    PubMed 

    Google Scholar
     

  • Mudassir J, et al. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. Int J Nanomed. 2019;14:4895–909.

    Article 
    CAS 

    Google Scholar
     

  • Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol. 2021;26(2):157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm. 2017;67(2):149–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao R, et al. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater Sci. 2021;9(3):685–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reboredo C, et al. Zein-based nanoparticles as oral carriers for insulin delivery. Pharmaceutics. 2021;14(1):39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rekha MR, Sharma C. Simultaneous effect of thiolation and carboxylation of chitosan particles towards mucoadhesive oral insulin delivery applications: an in vitro and in vivo evaluation. J Biomed Nanotechnol. 2015;11:11.

    Article 

    Google Scholar
     

  • Shan W, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano. 2015;9(3):2345–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Situ W, et al. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. J Agric Food Chem. 2015;63(16):4138–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonia TA, Sharma CP. pH sensitive thiolated cationic hydrogel for oral insulin delivery. J Biomed Nanotechnol. 2014;10(4):642–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhakar S, et al. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol. 2020;150:281–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun L, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym Chem. 2014;5:1999–2009.

    Article 
    CAS 

    Google Scholar
     

  • Sun L, et al. Scalable manufacturing of enteric encapsulation systems for site-specific oral insulin delivery. Biomacromol. 2019;20(1):528–38.

    Article 
    CAS 

    Google Scholar
     

  • Tan X, et al. Hydrophilic and electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm. 2020;17(9):3177–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urimi D, et al. Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech. 2019;20(3):131.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma A, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016;31:288–300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, et al. pH-responsive and mucoadhesive nanoparticles for enhanced oral insulin delivery: the effect of hyaluronic acid with different molecular weights. Pharmaceutics. 2023;15(3):820.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu S, et al. A delivery system for oral administration of proteins/peptides through bile acid transport channels. J Pharm Sci. 2019;108(6):2143–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing L, et al. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. J Mater Chem B. 2021;9(6):1707–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang ZH, et al. N-octyl-N-Arginine chitosan micelles as an oral delivery system of insulin. J Biomed Nanotechnol. 2013;9(4):601–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang P, et al. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 2015;496(2):993–1005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, et al. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B. 2018;6(45):7451–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, et al. Multifunctional nanoparticles enable efficient oral delivery of biomacromolecules via improving payload stability and regulating the transcytosis pathway. ACS Appl Mater Interfaces. 2018;10(40):34039–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, et al. A nanocomposite vehicle based on metal–organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl Mater Interfaces. 2020;12(20):22581–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou S, et al. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol Pharm. 2020;17(1):239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, et al. Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation. J Nanobiotechnol. 2020;18(1):96.

    Article 
    CAS 

    Google Scholar
     

  • Chaturvedi K, et al. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine (Lond). 2015;10(10):1569–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale. 2018;10(3):1494–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu XB, et al. Phospholipid complex based nanoemulsion system for oral insulin delivery: preparation, in vitro, and in vivo evaluations. Int J Nanomed. 2019;14:3055–67.

    Article 
    CAS 

    Google Scholar
     

  • Wu L, et al. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release. 2017;262:273–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, et al. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release. 2020;323:151–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int J Pharm. 2013;454(1):278–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, et al. A strategy for developing effective orally-delivered nanoparticles through modulation of the surface “hydrophilicity/hydrophobicity balance.” J Mater Chem B. 2017;5(6):1302–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, et al. Cholesterol moieties as building blocks for assembling nanoparticles to achieve effective oral delivery of insulin. Biomater Sci. 2020;8(14):3979–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guha A, et al. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation. Drug Deliv. 2016;23(9):3552–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia X, et al. Multi-functional self-assembly nanoparticles originating from small molecule natural product for oral insulin delivery through modulating tight junctions. J Nanobiotechnol. 2022;20(1):116.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, et al. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromol. 2018;19(6):2123–36.

    Article 
    CAS 

    Google Scholar
     

  • Morales-Burgos AM, et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery. Eur J Pharm Biopharm. 2021;163:16–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Situ W, et al. Resistant starch film-coated microparticles for an oral colon-specific polypeptide delivery system and its release behaviors. J Agric Food Chem. 2014;62(16):3599–609.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Z, et al. Scalable production of therapeutic protein nanoparticles using flash nanoprecipitation. Adv Healthc Mater. 2019;8(6): e1801010.

    Article 
    PubMed 

    Google Scholar
     

  • Turner PV, et al. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovshova T, et al. Optimization of methods for determination of the encapsulation efficiency of doxorubicin in the nanoparticles based on poly(lactic-co-glycolic acid) (PLGA). Drug Dev Regis. 2020;9:113–8.

    Article 
    CAS 

    Google Scholar
     

  • Kamelnia R, et al. Improving the stability of insulin through effective chemical modifications: a comprehensive review. Int J Pharm. 2024;661: 124399.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfatama M, et al. A comprehensive review of oral chitosan drug delivery systems: applications for oral insulin delivery. Nanotechnol Rev. 2024;13(1):20230205.

    Article 
    CAS 

    Google Scholar
     

  • Caturano A, et al. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel). 2024;17(7):945.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhumkar DR, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloomgarden Z. Novel approaches to the treatment of type 1 diabetes. J Diabetes. 2022;14(11):724–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol. 2021;33(4): e12941.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dube S, et al. Assessment of insulin action on carbohydrate metabolism: physiological and non-physiological methods. Diabet Med. 2013;30(6):664–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adeva-Andany MM, et al. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco NH. Animal experiments in biomedical research: a historical perspective. Animals (Basel). 2013;3(1):238–73.

    Article 
    PubMed 

    Google Scholar
     

  • Scridon A, et al. Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes / Sobolanii Wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai relevante caracteristici clinice, biochimice si hematologice ale diabetului uman. Revista Romana de Medicina de Laborator. 2015. 23.

  • Nagy G, et al. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes. 2022;13(10):835–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkel L, et al. Fetal programming of the endocrine pancreas: impact of a maternal low-protein diet on gene expression in the perinatal rat pancreas. Int J Mol Sci. 2022;23:11057. https://doi.org/10.3390/ijms231911057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: age and body weight matter. EXCLI J. 2021;20:1431–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iannaccone PM, Jacob HJ. Rats! Dis Model Mech. 2009;2(5–6):206–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu D. Advantages and disadvantages of different insulin administration methods for the treatment of diabetes. Adv Humanit Res. 2023;3:311–5.


    Google Scholar
     

  • Wang M, et al. Versatile oral insulin delivery nanosystems: from materials to nanostructures. Int J Mol Sci. 2022;23(6):3362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes–future perspectives. Int J Pharm. 2013;440(1):48–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain KK. An overview of drug delivery systems. Methods Mol Biol. 2020;2059:1–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals (Basel). 2020;13(10):307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter B, Neises G. “Human” insulin versus animal insulin in people with diabetes mellitus. Cochrane Database Syst Rev. 2005;2005(1): CD003816.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirst JA, et al. The need for randomization in animal trials: an overview of systematic reviews. PLoS ONE. 2014;9(6): e98856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahan BC, Rehal S, Cro S. Risk of selection bias in randomised trials. Trials. 2015;16:405.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danaei M, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang K, et al. Polymers and inorganic nanoparticles: a winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Toady. 2021;36: 101046.

    Article 
    CAS 

    Google Scholar
     

  • Biriukov D, Fibich P, Předota M. Zeta potential determination from molecular simulations. J Phys Chem C. 2020;124(5):3159–70.

    Article 
    CAS 

    Google Scholar
     

  • Eldridge JA, et al. Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure. J Colloid Interface Sci. 2014;429:45–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, et al. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release. 2023;353:699–712.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ACTTR. What Does “Span” of Particle Size Mean? 2020; Available from: https://www.acttr.com/en/en-faq/en-faq-particle-size-analyzer/411-en-faq-particle-span-meaning.html.

  • Liu Y, et al. Development of high-drug-loading nanoparticles. ChemPlusChem. 2020;85(9):2143–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankalapalli S, Kolapalli VR. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci. 2009;71(5):481–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankerfors C. Polyelectrolyte complexes: preparation, characterization, and use for control of wet and dry adhesion between surfaces. In: Chemical science and engineering. 2012, HTJ: Stockholm. p. 58.

  • Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target. 2021;29(4):365–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guadarrama-Escobar OR, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci. 2023;24(5):4289.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Y, et al. Oral insulin delivery platforms: strategies to address the biological barriers. Angew Chem Int Ed Engl. 2020;59(45):19787–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langguth P, et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release. 1997;46(1–2):18.


    Google Scholar
     

  • Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23(3):351–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv. 2013;10(1):103–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikh R, et al. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci (Basel). 2018;6(4):116.

    CAS 
    PubMed 

    Google Scholar
     

  • Sousa de Almeida M, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meneguin AB, et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: a review. Carbohydr Polym. 2021;256: 117504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes MA, et al. Intestinal uptake of insulin nanoparticles: facts or myths? Curr Pharm Biotechnol. 2014;15(7):629–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barfar A, et al. Oral insulin delivery: a review on recent advancements and novel strategies. Curr Drug Deliv. 2024;21(6):887–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa C, et al. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci. 2020;8(12):3270–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saw PE, et al. Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 2019;19(9):5967–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020;237: 119827.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, et al. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnol. 2024;22(1):354.

    Article 

    Google Scholar
     

  • Bikram M, et al. Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release. 2007;123(3):219–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter B, Bongaerts B, Metzendorf MI. Thermal stability and storage of human insulin. Cochrane Database Syst Rev. 2023;11(11):CD015385.

    PubMed 

    Google Scholar
     

  • Shorten PR, McMahon CD, Soboleva TK. Insulin transport within skeletal muscle transverse tubule networks. Biophys J. 2007;93(9):3001–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link FJ, Heng JYY. Unraveling the impact of pH on the crystallization of pharmaceutical proteins: a case study of human insulin. Cryst Growth Des. 2022;22(5):3024–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heerklotz H. Interactions of surfactants with lipid membranes. Q Rev Biophys. 2008;41(3–4):205–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parsi K. Interaction of detergent sclerosants with cell membranes. Phlebology. 2015;30(5):306–15.

    Article 
    PubMed 

    Google Scholar
     

  • Venkatesan J, et al. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers (Basel). 2016;8(2):30.

    Article 
    PubMed 

    Google Scholar
     


  • Discover more from TrendyShopToBuy

    Subscribe to get the latest posts sent to your email.

    Latest articles

    spot_imgspot_img

    Related articles

    Leave a Reply

    spot_imgspot_img

    Discover more from TrendyShopToBuy

    Subscribe now to keep reading and get access to the full archive.

    Continue reading