Disease, N.I.o.D.a.D.a.K. What is diabetes? 2023 [cited 2023 October 20]; Available from: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes.
Zhang S, Staples AE. Microfluidic-based systems for the management of diabetes. Drug Deliv Transl Res. 2024;14:2989.
Saeedi P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2019;157: 107843.
Saeedi P, et al. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res Clin Pract. 2020;162: 108086.
Mobasseri M, et al. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10(2):98–115.
Collaborators GD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: asystematic analysis for the Global Burden of Disease Study 2021. The Lancet. 2023;402(10397):31.
Di Pietrantonio N, et al. Role of epigenetics and metabolomics in predicting endothelial dysfunction in type 2 diabetes. Adv Biol (Weinh). 2023;7(9): e2300172.
Nørlev JTD, et al. Quantification of insulin adherence in adults with insulin-treated type 2 diabetes: a systematic review. Diabetes Metab Syndr. 2023;17(12): 102908.
Li SH, et al. Metal-polyphenol microgels for oral delivery of puerarin to alleviate the onset of diabetes. Drug Deliv Transl Res. 2024;14(3):757–72.
Tan SY, et al. Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. 2019;13(1):364–72.
Yoon J-W, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002;8(2):6.
Kono TM, et al. Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: analysis of hASC-derived paracrine effectors. Stem Cells. 2014;32(7):1831–42.
Sher EK, et al. Novel therapeutical approaches based on neurobiological and genetic strategies for diabetic polyneuropathy—a review. Diabetes Metab Syndr. 2023;17(11): 102901.
El Maalouf IR, Capoccia K, Priefer R. Non-invasive ways of administering insulin. Diabetes Metab Syndr. 2022;16(4): 102478.
Lopes M, et al. Why most oral insulin formulations do not reach clinical trials. Ther Deliv. 2015;6(8):973–87.
Arora S, et al. Early detection of cutaneous complications of insulin therapy in type 1 and type 2 diabetes mellitus. Prim Care Diabetes. 2021;15(5):859–64.
Richardson T, Kerr D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am J Clin Dermatol. 2003;4(10):661–7.
Hammad RW, et al. Cubosomal functionalized block copolymer platform for dual delivery of linagliptin and empagliflozin: recent advances in synergistic strategies for maximizing control of high-risk type II diabetes. Drug Deliv Transl Res. 2024;14(3):678–95.
Trief PM, et al. Incorrect insulin administration: a problem that warrants attention. Clin Diabetes. 2016;34(1):25–33.
DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet J. 2018;391(10138):2449–62.
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.
Pandey V, et al. Chapter 18—excipient toxicity and safety. In: Tekade RK, editor., et al., Pharmacokinetics and toxicokinetic considerations. New York: Academic Press; 2022. p. 487–511.
Sharma S, Parveen R, Chatterji BP. Toxicology of nanoparticles in drug delivery. Curr Pathobiol Rep. 2021;9(4):133–44.
Gil AG, et al. Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem Toxicol. 2017;106(Pt A):477–86.
Harugade A, Sherje A, Pethe A. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React Funct Polym. 2023;1991.
Wang W, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487.
Xu J, et al. Chitosan-microcapsulated insulin alleviates mesenteric microcirculation dysfunction via modulating COX-2 and VCAM-1 expression in rats with diabetes mellitus. Int J Nanomed. 2018;13:6829–37.
Tian H, et al. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Healthc Mater. 2018;7(17): e1800285.
Agrawal A, et al. Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015;5:105179–93.
Papakostidis C, Giannoudis PV. Meta-analysis. What have we learned? Injury. 2023;54(Suppl 3):S30–4.
Wang XM, et al. A brief introduction of meta-analyses in clinical practice and research. J Gene Med. 2021;23(5): e3312.
Peng T, et al. Rational design of oral delivery nanosystems for hypoglycemic peptides. Nano Today. 2023;53: 102031.
Page MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.
Morgan RL, et al. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int. 2018;121(Pt 1):1027–31.
Guyatt GH, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64(4):395–400.
Ouzzani M, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.
Tiloke C, Phulukdaree A, Chuturgoon AA. The chemotherapeutic potential of gold nanoparticles against human carcinomas: a review. In: Andrew W, editor. Nanoarchitectonics for smart delivery and drug targeting. New York: Elsevier; 2016. p. 783–811.
Badwaik H, et al. Phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical aspects. In: Studies in natural products chemistry. New York: Elsevier; 2019. p. 415–60.
ImageJ. [cited 01/07/2024; Available from: https://imagej.net/ij/.
The jamovi project. jamovi (Version 2.3) [Computer Software]. Available from: https://www.jamovi.org.
Cochrane.org. Chapter 10: Analysing data and undertaking meta-analyses. 2024; Available from: https://training.cochrane.org/handbook/current/chapter-10.
Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107(44):776–82.
Yeturu K, Srinivasa Rao ASR, Rao CR. Chapter 3—Machine learning algorithms, applications, and practices in data science. In: Principles and methods for data science. New York: Elsevier; 2020. p. 81–206.
Hooijmans CR, et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43.
Raguraman V, Jayasri MA, Suthindhiran K. Magnetosome mediated oral Insulin delivery and its possible use in diabetes management. J Mater Sci Mater Med. 2020;31(8):75.
Li Y, et al. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Theranostics. 2021;11(9):4452–66.
Li L, et al. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):278–86.
Sheng J, et al. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl Mater Interfaces. 2015;7(28):15430–41.
Guo H, et al. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin delivery. Polym Chem. 2016;7:3189–99.
Sheng J, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181–90.
Sun S, et al. Multifunctional composite microcapsules for oral delivery of insulin. Int J Mol Sci. 2016;18(1):54.
Kim KS, et al. Immense insulin intestinal uptake and lymphatic transport using bile acid conjugated partially uncapped liposome. Mol Pharm. 2018;15(10):4756–63.
Kim JU, et al. Optimization of phytic acid-crosslinked chitosan microspheres for oral insulin delivery using response surface methodology. Int J Pharm. 2020;588: 119736.
Alibolandi M, et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: in vitro and in vivo evaluation. J Control Release. 2016;227:58–70.
Al-Remawi M, et al. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm Dev Technol. 2017;22(3):390–8.
Amaral M, et al. How can biomolecules improve mucoadhesion of oral insulin? A comprehensive insight using. Biomolecules. 2020;10(5):675.
Bai Y, et al. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. J Mater Chem B. 2020;8(13):2636–49.
Balabushevich NG, et al. Layer-by-layer adsorption of biopolyelectrolytes as a universal approach to fabrication of protein-loaded microparticles. Moscow University Chemistry Bulletin. 2014.
Chen T, et al. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul. 2019;36(1):96–107.
Chen X, et al. Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. Int J Pharm. 2019;562:23–30.
Cho HJ, et al. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. Int J Biol Macromol. 2014;63:15–20.
Elsayed AM, et al. Low molecular weight chitosan–insulin complexes solubilized in a mixture of self-assembled labrosol and plurol oleaque and their glucose reduction activity in rats. Mar Drugs. 2018;16(1):32.
El Leithy ES, Abdel-Bar HM, Ali RA. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int J Pharm. 2019;571: 118708.
Fang Y, et al. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: optimized preparation, characterization, and in vivo evaluation. J Pharm Sci. 2019;108(9):2994–3002.
Gao Y, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364–75.
He H, et al. VB12-coated Gel-Core-SLN containing insulin: another way to improve oral absorption. Int J Pharm. 2015;493(1–2):451–9.
He Z, et al. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale. 2018;10(7):3307–19.
Hu Y, Wang J, Qiu L. Polymeric nano-vesicles via intermolecular action to load and orally deliver insulin with enhanced hypoglycemic effect. RSC Adv. 2020;10(13):7887–97.
Inchaurraga L, et al. Zein-based nanoparticles for the oral delivery of insulin. Drug Deliv Transl Res. 2020;10(6):1601–11.
Jin Y, et al. Chitosan modified cerasomes incorporating poly (vinyl pyrrolidone) for oral insulin delivery. RSC Adv. 2014;4:58137–44.
Kassem M, et al. Formulation, characterization and in vivo application of oral insulin nanotechnology using different biodegradable polymers: advanced drug delivery system. Int J Pharm Sci Res. 2018;9:3664–77.
Kumari Y, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. Int J Biol Macromol. 2020;149:976–88.
Lee JH, et al. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug. Biomaterials. 2016;103:160–9.
Lee SH, et al. Enhanced oral delivery of insulin via the colon-targeted nanocomposite system of organoclay/glycol chitosan/Eudragit. J Nanobiotechnol. 2020;18(1):104.
Li X, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–87.
Li J, et al. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm Sin B. 2022;12(3):1460–72.
Liu L, et al. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomed. 2016;11:761–9.
Liu C, et al. A novel ligand conjugated nanoparticles for oral insulin delivery. Drug Deliv. 2016;23(6):2015–25.
Liu M, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.
Liu L, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomater Sci Eng. 2018;4(8):2889–902.
Liu M, et al. Iron-mimic peptide converts transferrin from foe to friend for orally targeting insulin delivery. J Mater Chem B. 2018;6(4):593–601.
Liu X, et al. Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors. Biomater Sci. 2021;9(8):2903–16.
Lopes M, et al. In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm. 2017;113:88–96.
Martínez-López AL, et al. Arabinoxylans-based oral insulin delivery system targeting the colon: simulation in a human intestinal microbial ecosystem and evaluation in diabetic rats. Pharmaceuticals (Basel). 2022;15(9):1062.
Mudassir J, et al. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. Int J Nanomed. 2019;14:4895–909.
Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol. 2021;26(2):157–66.
Paul PK, Treetong A, Suedee R. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm. 2017;67(2):149–68.
Rao R, et al. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater Sci. 2021;9(3):685–99.
Reboredo C, et al. Zein-based nanoparticles as oral carriers for insulin delivery. Pharmaceutics. 2021;14(1):39.
Rekha MR, Sharma C. Simultaneous effect of thiolation and carboxylation of chitosan particles towards mucoadhesive oral insulin delivery applications: an in vitro and in vivo evaluation. J Biomed Nanotechnol. 2015;11:11.
Shan W, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano. 2015;9(3):2345–56.
Shan W, et al. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–53.
Situ W, et al. Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. J Agric Food Chem. 2015;63(16):4138–47.
Sonia TA, Sharma CP. pH sensitive thiolated cationic hydrogel for oral insulin delivery. J Biomed Nanotechnol. 2014;10(4):642–50.
Sudhakar S, et al. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol. 2020;150:281–8.
Sun L, et al. Oral glucose- and pH-sensitive nanocarriers for simulating insulin release in vivo. Polym Chem. 2014;5:1999–2009.
Sun L, et al. Scalable manufacturing of enteric encapsulation systems for site-specific oral insulin delivery. Biomacromol. 2019;20(1):528–38.
Tan X, et al. Hydrophilic and electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm. 2020;17(9):3177–91.
Urimi D, et al. Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech. 2019;20(3):131.
Verma A, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: a mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016;31:288–300.
Wang S, et al. pH-responsive and mucoadhesive nanoparticles for enhanced oral insulin delivery: the effect of hyaluronic acid with different molecular weights. Pharmaceutics. 2023;15(3):820.
Wu S, et al. A delivery system for oral administration of proteins/peptides through bile acid transport channels. J Pharm Sci. 2019;108(6):2143–52.
Xing L, et al. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. J Mater Chem B. 2021;9(6):1707–18.
Xu Y, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces. 2018;10(11):9315–24.
Zhang ZH, et al. N-octyl-N-Arginine chitosan micelles as an oral delivery system of insulin. J Biomed Nanotechnol. 2013;9(4):601–9.
Zhang P, et al. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 2015;496(2):993–1005.
Zhang L, et al. Preparation and characterization of layer-by-layer hypoglycemic nanoparticles with pH-sensitivity for oral insulin delivery. J Mater Chem B. 2018;6(45):7451–61.
Zheng Y, et al. Multifunctional nanoparticles enable efficient oral delivery of biomacromolecules via improving payload stability and regulating the transcytosis pathway. ACS Appl Mater Interfaces. 2018;10(40):34039–49.
Zhou Y, et al. A nanocomposite vehicle based on metal–organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl Mater Interfaces. 2020;12(20):22581–92.
Zhou S, et al. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol Pharm. 2020;17(1):239–50.
Zhou X, et al. Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation. J Nanobiotechnol. 2020;18(1):96.
Chaturvedi K, et al. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles. Nanomedicine (Lond). 2015;10(10):1569–83.
Cui Y, et al. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of “easy uptake hard transcytosis” of ligand-modified nanoparticles in oral drug delivery. Nanoscale. 2018;10(3):1494–507.
Hu XB, et al. Phospholipid complex based nanoemulsion system for oral insulin delivery: preparation, in vitro, and in vivo evaluations. Int J Nanomed. 2019;14:3055–67.
Wu L, et al. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release. 2017;262:273–83.
Wu J, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–28.
Wu L, et al. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release. 2020;323:151–60.
Zhao X, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int J Pharm. 2013;454(1):278–84.
Cui Y, et al. A strategy for developing effective orally-delivered nanoparticles through modulation of the surface “hydrophilicity/hydrophobicity balance.” J Mater Chem B. 2017;5(6):1302–14.
Ding Y, et al. Cholesterol moieties as building blocks for assembling nanoparticles to achieve effective oral delivery of insulin. Biomater Sci. 2020;8(14):3979–93.
Guha A, et al. pH responsive cylindrical MSN for oral delivery of insulin-design, fabrication and evaluation. Drug Deliv. 2016;23(9):3552–61.
Jia X, et al. Multi-functional self-assembly nanoparticles originating from small molecule natural product for oral insulin delivery through modulating tight junctions. J Nanobiotechnol. 2022;20(1):116.
Liu L, et al. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromol. 2018;19(6):2123–36.
Morales-Burgos AM, et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery. Eur J Pharm Biopharm. 2021;163:16–22.
Situ W, et al. Resistant starch film-coated microparticles for an oral colon-specific polypeptide delivery system and its release behaviors. J Agric Food Chem. 2014;62(16):3599–609.
Zeng Z, et al. Scalable production of therapeutic protein nanoparticles using flash nanoprecipitation. Adv Healthc Mater. 2019;8(6): e1801010.
Turner PV, et al. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.
Kovshova T, et al. Optimization of methods for determination of the encapsulation efficiency of doxorubicin in the nanoparticles based on poly(lactic-co-glycolic acid) (PLGA). Drug Dev Regis. 2020;9:113–8.
Kamelnia R, et al. Improving the stability of insulin through effective chemical modifications: a comprehensive review. Int J Pharm. 2024;661: 124399.
Alfatama M, et al. A comprehensive review of oral chitosan drug delivery systems: applications for oral insulin delivery. Nanotechnol Rev. 2024;13(1):20230205.
Caturano A, et al. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel). 2024;17(7):945.
Bhumkar DR, et al. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–26.
Bloomgarden Z. Novel approaches to the treatment of type 1 diabetes. J Diabetes. 2022;14(11):724–6.
Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol. 2021;33(4): e12941.
Dube S, et al. Assessment of insulin action on carbohydrate metabolism: physiological and non-physiological methods. Diabet Med. 2013;30(6):664–70.
Adeva-Andany MM, et al. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.
Franco NH. Animal experiments in biomedical research: a historical perspective. Animals (Basel). 2013;3(1):238–73.
Scridon A, et al. Wistar rats with long-term streptozotocin-induced type 1 diabetes mellitus replicate the most relevant clinical, biochemical, and hematologic features of human diabetes / Sobolanii Wistar cu diabet zaharat tip 1 indus cu streptozotocina reproduc cele mai relevante caracteristici clinice, biochimice si hematologice ale diabetului uman. Revista Romana de Medicina de Laborator. 2015. 23.
Nagy G, et al. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes. 2022;13(10):835–50.
Winkel L, et al. Fetal programming of the endocrine pancreas: impact of a maternal low-protein diet on gene expression in the perinatal rat pancreas. Int J Mol Sci. 2022;23:11057. https://doi.org/10.3390/ijms231911057.
Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: age and body weight matter. EXCLI J. 2021;20:1431–45.
Iannaccone PM, Jacob HJ. Rats! Dis Model Mech. 2009;2(5–6):206–10.
Zhu D. Advantages and disadvantages of different insulin administration methods for the treatment of diabetes. Adv Humanit Res. 2023;3:311–5.
Wang M, et al. Versatile oral insulin delivery nanosystems: from materials to nanostructures. Int J Mol Sci. 2022;23(6):3362.
Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes–future perspectives. Int J Pharm. 2013;440(1):48–62.
Jain KK. An overview of drug delivery systems. Methods Mol Biol. 2020;2059:1–54.
Seyam S, Nordin NA, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals (Basel). 2020;13(10):307.
Richter B, Neises G. “Human” insulin versus animal insulin in people with diabetes mellitus. Cochrane Database Syst Rev. 2005;2005(1): CD003816.
Hirst JA, et al. The need for randomization in animal trials: an overview of systematic reviews. PLoS ONE. 2014;9(6): e98856.
Kahan BC, Rehal S, Cro S. Risk of selection bias in randomised trials. Trials. 2015;16:405.
Danaei M, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.
Yang K, et al. Polymers and inorganic nanoparticles: a winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Toady. 2021;36: 101046.
Biriukov D, Fibich P, Předota M. Zeta potential determination from molecular simulations. J Phys Chem C. 2020;124(5):3159–70.
Eldridge JA, et al. Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure. J Colloid Interface Sci. 2014;429:45–52.
Xu J, et al. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release. 2023;353:699–712.
ACTTR. What Does “Span” of Particle Size Mean? 2020; Available from: https://www.acttr.com/en/en-faq/en-faq-particle-size-analyzer/411-en-faq-particle-span-meaning.html.
Liu Y, et al. Development of high-drug-loading nanoparticles. ChemPlusChem. 2020;85(9):2143–57.
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308.
Lankalapalli S, Kolapalli VR. Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci. 2009;71(5):481–7.
Ankerfors C. Polyelectrolyte complexes: preparation, characterization, and use for control of wet and dry adhesion between surfaces. In: Chemical science and engineering. 2012, HTJ: Stockholm. p. 58.
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target. 2021;29(4):365–86.
Guadarrama-Escobar OR, et al. Chitosan nanoparticles as oral drug carriers. Int J Mol Sci. 2023;24(5):4289.
Xiao Y, et al. Oral insulin delivery platforms: strategies to address the biological barriers. Angew Chem Int Ed Engl. 2020;59(45):19787–95.
Langguth P, et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release. 1997;46(1–2):18.
Alai MS, Lin WJ, Pingale SS. Application of polymeric nanoparticles and micelles in insulin oral delivery. J Food Drug Anal. 2015;23(3):351–8.
Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv. 2013;10(1):103–14.
Shaikh R, et al. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.
Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.
Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci (Basel). 2018;6(4):116.
Sousa de Almeida M, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.
Meneguin AB, et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of diabetes mellitus: a review. Carbohydr Polym. 2021;256: 117504.
Lopes MA, et al. Intestinal uptake of insulin nanoparticles: facts or myths? Curr Pharm Biotechnol. 2014;15(7):629–38.
Barfar A, et al. Oral insulin delivery: a review on recent advancements and novel strategies. Curr Drug Deliv. 2024;21(6):887–900.
Costa C, et al. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci. 2020;8(12):3270–7.
Saw PE, et al. Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 2019;19(9):5967–74.
Chen J, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020;237: 119827.
Liu X, et al. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnol. 2024;22(1):354.
Bikram M, et al. Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery. J Control Release. 2007;123(3):219–27.
Richter B, Bongaerts B, Metzendorf MI. Thermal stability and storage of human insulin. Cochrane Database Syst Rev. 2023;11(11):CD015385.
Shorten PR, McMahon CD, Soboleva TK. Insulin transport within skeletal muscle transverse tubule networks. Biophys J. 2007;93(9):3001–7.
Link FJ, Heng JYY. Unraveling the impact of pH on the crystallization of pharmaceutical proteins: a case study of human insulin. Cryst Growth Des. 2022;22(5):3024–33.
Heerklotz H. Interactions of surfactants with lipid membranes. Q Rev Biophys. 2008;41(3–4):205–64.
Parsi K. Interaction of detergent sclerosants with cell membranes. Phlebology. 2015;30(5):306–15.
Venkatesan J, et al. Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers (Basel). 2016;8(2):30.
Discover more from TrendyShopToBuy
Subscribe to get the latest posts sent to your email.