Chemistry, manufacturing and controls strategies for using novel excipients in lipid nanoparticles


  • Lewis, L. M., Badkar, A. V., Cirelli, D., Combs, R. & Lerch, T. F. The race to develop the Pfizer–BioNTech COVID-19 vaccine: from the pharmaceutical scientists’ perspective. J. Pharm. Sci. 112, 640–647 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorn, C. R. et al. The journey of a lifetime — development of Pfizer’s COVID-19 vaccine. Curr. Opin. Biotechnol. 78, 102803 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warne, N. et al. Delivering 3 billion doses of Comirnaty in 2021. Nat. Biotechnol. 41, 183–188 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017). A foundational review article that explains the fundamental design principles for LNPs and their proposed mechanism of action.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swaminathan, G. et al. A novel lipid nanoparticle adjuvant significantly enhances B cell and T cell responses to sub-unit vaccine antigens. Vaccine 34, 110–119 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021). An exhaustive review of lipids that have been used in LNPs for nucleic acid delivery, with a description of the design principles for each lipid class.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hald Albertsen, C. et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv. Drug Deliv. Rev. 188, 114416 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guidance for Industry: Nonclinical Studies for the Safety Evaluation of Pharmaceutical Excipients (US FDA, 2005); https://www.fda.gov/media/72260/download

  • Guideline on Excipients in the Dossier for Application for Marketing Authorisation of a Medicinal Product EMEA/CHMP/QWP/396951/2006 (EMA, 2007); https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-excipients-dossier-application-marketing-authorisation-medicinal-product-revision-2_en.pdf

  • Elder, D. P., Kuentz, M. & Holm, R. Pharmaceutical excipients — quality, regulatory and biopharmaceutical considerations. Eur. J. Pharm. Sci. 87, 88–99 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozarewicz, P. & Loftsson, T. Novel excipients – regulatory challenges and perspectives – the EU insight. Int. J. Pharm. 546, 176–179 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koo, O. M. & Varia, S. A. Case studies with new excipients: development, implementation and regulatory approval. Ther. Deliv. 2, 949–956 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, Y. B., Taraban, M. B., Briggs, K. T., Brinson, R. G. & Marino, J. P. Excipient innovation through precompetitive research. Pharm. Res. 38, 2179–2184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, R., Monpara, J., Swaminathan, S. & Kalhapure, R. Chemistry and art of developing lipid nanoparticles for biologics delivery: focus on development and scale-up. Pharmaceutics 16, 131 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onpattro (Patisiran) Lipid Complex Injection, for Intravenous Use [Package Insert] (US FDA, 2018); https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/210922s012lbl.pdf

  • Committee for Medicinal Products for Human Use. Onpattro Assessment Report EMA/554262/2018 (EMA, 2018); https://www.ema.europa.eu/en/documents/assessment-report/onpattro-epar-public-assessment-report_.pdf

  • Drug Approval Package: Onpattro (patisiran) (US FDA, 2018); https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000TOC.cfm. The drug approval package for Onpattro—an LNP approved by the US FDA for commercial use, and the only one via the NDA pathway.

  • Summary Basis for Regulatory Action: Comirnaty (US FDA, 2021); https://www.fda.gov/media/151733/download. The summary basis of approval for Comirnaty—the second LNP approved (via emergency-use authorization) by the US FDA for commercial use, this time via the BLA pathway.

  • Comirnaty (COVID-19 Vaccine, mRNA) Suspension for Injection, for Intramuscular Use [Package Insert] (US FDA, 2021); https://www.fda.gov/media/151707/download

  • Committee for Medicinal Products for Human Use. Comirnaty Assessment Report EMA/707383/2020 Corr.2 (EMA, 2021); https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

  • Spikevax (COVID-19 Vaccine, mRNA) Suspension for Injection, for Intramuscular Use [Package Insert] (US FDA, 2022); https://www.fda.gov/media/155675/download

  • Summary Basis for Regulatory Action: Spikevax (US FDA, 2022); https://www.fda.gov/media/155931/download. The summary basis of approval for Spikevax—the third LNP approved (via emergency-use authorization) by the US FDA for commercial use, and the second via the BLA pathway.

  • Committee for Medicinal Products for Human Use. COVID-19 Vaccine Moderna Assessment Report EMA/15689/2021 Corr.1 (EMA, 2021); https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf

  • Hemmrich, E. & McNeil, S. Active ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023). A perspective that highlights the inconsistency in how components within nanomedicines may be classified as excipients or a part of the active ingredient.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guidance for Industry: Liposome Drug Products (US FDA, 2018); https://www.fda.gov/media/70837/download. The most comprehensive regulatory guidance document on lipid excipients, with a focus on their use in liposome drug products.

  • Committee for Medicinal Products for Human Use. Guideline on the Chemistry of Active Substances EMA/454576/2016 (EMA, 2016); https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-chemistry-active-substances_en.pdf

  • Committee for Human Medicinal Products. Reflection Paper on the Data Requirements for Intravenous Liposomal Products Developed with Reference to an Innovator Liposomal Product EMA/CHMP/806058/2009/Rev. 02 (EMA, 2013); https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-data-requirements-intravenous-liposomal-products-developed-reference-innovator_en.pdf

  • Evaluation of the Quality, Safety and Efficacy of Messenger RNA Vaccines for the Prevention of Infectious Diseases: Regulatory Considerations (World Health Organization, 2021); https://cdn.who.int/media/docs/default-source/biologicals/ecbs/post-ecbs-who-regulatory-considerations-document-for-mrna-vaccines—final-version—29-nov-2021_tz.pdf. The regulatory guidance document that most specifically outlines CMC expectations for LNPs, albeit not from a health authority responsible for the approval of clinical or commercial filing applications.

  • Qualification of Excipients for Use in Pharmaceuticals (International Pharmaceutical Excipients Council, 2020); https://www.ipec-europe.org/uploads/publications/20201026-eq-guide-revision-final-1615800052.pdf

  • The Joint Good Manufacturing Practices Guide for Pharmaceutical Excipients Version 5 (International Pharmaceutical Excipients Council, Pharmaceutical Quality Group, 2022); https://www.ipec-europe.org/articles/ipec-pqg-gmp-guide.html

  • Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oude Blenke, E. et al. The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case. J. Pharm. Sci. 112, 386–403 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musakhanian, J., Rodier, J.-D. & Dave, M. Oxidative stability in lipid formulations: a review of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech 23, 151 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De, A. & Ko, Y. T. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Expert Opin. Drug Deliv. 20, 175–187 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Gamage, P. L., Jiang, W. & Mudalige, T. Excipient-related impurities in liposome drug products. Int. J. Pharm. 657, 124164 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleintop, B. et al. GMPs for method validation in early development: an industry perspective (part II). Pharm. Technol. https://www.pharmtech.com/view/gmps-method-validation-early-development-industry-perspective-part-ii (2012).

  • Harvey, J. et al. Management of organic impurities in small molecule medicinal products: deriving safe limits for use in early development. Regul. Toxicol. Pharmacol. 84, 116–123 (2017). A commentary that outlines impurity control strategies that may be used in early clinical development, which may be considered for lipid excipients in LNPs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guidance for Industry: Q3A Impurities in New Drug Substances (US FDA, 2008); https://www.fda.gov/media/71727/download

  • Guidance for Industry: M4Q: The CTD — Quality (US FDA, 2001); https://www.fda.gov/media/71581/download

  • Guidance for Industry: Drug Master Files (US FDA, 2019); https://www.fda.gov/media/131861/download

  • Biologics license applications and master files. Fed. Reg. 89, 9743–9757 (12 February 2024); https://www.govinfo.gov/content/pkg/FR-2024-02-12/pdf/2024-02741.pdf

  • Guidance for Industry: Q2(R2) Validation of Analytical Procedures (US FDA, 2022); https://www.fda.gov/media/161201/download

  • Guidance for Industry: Q3C Impurities: Residual Solvents (US FDA, 1997); https://www.fda.gov/media/71736/download

  • Guidance for Industry: Q3D(R2) Elemental Impurities (US FDA, 2022); https://www.fda.gov/media/148474/download

  • Guidance for Industry: Control of Nitrosamine Impurities in Human Drugs (US FDA, 2021); https://www.fda.gov/media/141720/download

  • Raffaele, J., Loughney, J. W. & Rustandi, R. R. Development of a microchip capillary electrophoresis method for determination of the purity and integrity of mRNA in lipid nanoparticle vaccines. Electrophoresis 43, 1101–1106 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021). An innovative research article that highlighted how reactions between a nucleic acid and lipid in an LNP can impact product quality and manufacturing control strategies.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinsey, C. et al. Determination of lipid content and stability in lipid nanoparticles using ultra high-performance liquid chromatography in combination with a corona charged aerosol detector. Electrophoresis 43, 1091–1100 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR–Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasiewicz, L. N. et al. GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guidance for Industry: Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs) (US FDA, 2020); https://www.fda.gov/media/113760/download

  • Guidance for Industry: Drug Products, Including Biological Products, that Contain Nanomaterials (US FDA, 2022); https://www.fda.gov/media/157812/download

  • Guideline for the Development of Liposome Drug Products (Japan Ministry of Health, Labour and Welfare, 2016); https://www.nihs.go.jp/drug/section4/160328_MHLW_liposome_guideline.pdf

  • Reflection Paper on Nucleic Acids (siRNA)-loaded Nanotechnology-based Drug Products (Japan Ministry of Health, Labour and Welfare, 2016); https://www.nihs.go.jp/drug/section4/160328_MHLW_siRNA_RP.pdf

  • Wasylaschuk, W. R. et al. Evaluation of hydroperoxides in common pharmaceutical excipients. J. Pharm. Sci. 96, 106–116 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garner, J. et al. A protocol for assay of poly(lactide-co-glycolide) in clinical products. Int. J. Pharm. 495, 87–92 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanez Arteta, M. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, Y. & Ishihara, H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug. Metab. Pharmacokinet. 41, 100424 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Article 

    Google Scholar
     

  • Li, Z. et al. Acidification-induced structure evolution of lipid nanoparticles correlates with their in vitro gene transfections. ACS Nano 17, 979–990 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang Thi, T. T. et al. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shi, D. et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 180, 114079 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abu Lila, A. S., Kiwada, H. & Ishida, T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release 172, 38–47 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, B.-M., Cheng, T.-L. & Roffler, S. R. Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 15, 14022–14048 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bavli, Y. et al. Anti-PEG antibodies before and after a first dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Control. Release 354, 316–322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Münter, R. et al. Investigating generation of antibodies against the lipid nanoparticle vector following COVID-19 vaccination with an mRNA vaccine. Mol. Pharm. 20, 3356–3366 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajj, K. A. et al. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15, 1805097 (2019).

    Article 

    Google Scholar
     

  • Han, X. et al. In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors. Nat. Commun. 15, 1762 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatia, S. N. & Dahlman, J. E. RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2315789121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 33, 870–876 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle performance through specific interactions with mRNA. Adv. Func. Mater. 32, 2106727 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Da Silva Sanchez, A. J. et al. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery. J. Control. Release 353, 270–277 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jörgensen, A. M., Wibel, R. & Bernkop-Schnürch, A. Biodegradable cationic and ionizable cationic lipids: a roadmap for safer pharmaceutical excipients. Small 19, 2206968 (2023).

    Article 

    Google Scholar
     

  • Ci, L. et al. Biodistribution of Lipid 5, mRNA, and its translated protein following intravenous administration of mRNA-encapsulated lipid nanoparticles in rats. Drug Metab. Dispos. 51, 813–823 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burdette, D. et al. Systemic exposure, metabolism, and elimination of [14C]-labeled amino lipid, Lipid 5, after a single administration of mRNA encapsulating lipid nanoparticles to Sprague-Dawley rats. Drug Metab. Dispos. 51, 804–812 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol. 60, 573–585 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregoriadis, G. (ed.) Liposome Technology: Entrapment of Drugs and Other Materials into Liposomes 3rd edn (CRC, 2006).

  • Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barenholz, Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Immordino, M. L., Dosio, F. & Cattel, L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1, 297–315 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M.-L. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv. Drug Deliv. Rev. 60, 768–777 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cholesterol. In US Pharmacopeia USP29–NF24, 3314 (United States Pharmacopeial Convention, 2007).

  • Cholesterol. In Japanese Pharmacopeia 18th edn, 749 (The Pharmaceuticals and Medical Devices Agency, 2021).

  • Cholesterol. In European Pharmacopoeia 7.0 1680–1681 (European Directorate for the Quality of Medicines & HealthCare (EDQM), 2008).

  • Cholesterol for parenteral use. In European Pharmacopoeia 8.0 1874 (EDQM, 2012).

  • Cholesterol for parenteral use. In European Pharmacopoeia 10.0 2397E (EDQM, 2020).

  • Cholesterol for parenteral use. In European Pharmacopoeia 11.0 2397 (EDQM, 2023).


  • Discover more from TrendyShopToBuy

    Subscribe to get the latest posts sent to your email.

    Latest articles

    spot_imgspot_img

    Related articles

    Leave a Reply

    spot_imgspot_img

    Discover more from TrendyShopToBuy

    Subscribe now to keep reading and get access to the full archive.

    Continue reading