3D cryo-printed hierarchical porous scaffolds provide immobilization of surface-functionalized sleep-inspired small extracellular vesicles: synergistic therapeutic strategies for vascularized bone regeneration based on macrophage phenotype modulation and angiogenesis-osteogenesis coupling | Journal of Nanobiotechnology


  • Johnson ZM, Yuan Y, Li X, Jashashvili T, Jamieson M, Urata M, Chen Y, Chai Y. Mesenchymal stem cells and three-dimensional-osteoconductive Scaffold regenerate calvarial bone in critical size defects in Swine. Stem Cells Translational Med. 2021;10:1170–83.

    Article 
    CAS 

    Google Scholar
     

  • Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and bone graft substitutes: clinical evidence and indications for Use in the setting of Orthopaedic Trauma surgery. J Orthop Trauma. 2019;33:203–13.

    Article 
    PubMed 

    Google Scholar
     

  • Regenerative Approaches for the Treatment of Large Bone Defects. Tissue Eng Part B: Reviews. 2021;27:539–47.

    Article 

    Google Scholar
     

  • Mohammadi H, Sepantafar M, Muhamad N, Bakar Sulong A. How does Scaffold Porosity Conduct Bone tissue regeneration? Adv Eng Mater. 2021;23:2100463.

    Article 
    CAS 

    Google Scholar
     

  • Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, Marei HE. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med. 2018;12:1448–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu A, Zhang C, Xu W, Zhang Y, Tian S, Liu B, Zhang J, He A, Su B, Lu X. Additive manufacturing of multi-morphology graded titanium scaffolds for bone implant applications. J Mater Sci Technol. 2023;139:47–58.

    Article 

    Google Scholar
     

  • Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An overview of translational research in bone graft biomaterials. J Biomater Sci Polym Ed. 2023;34:497–540.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D bioprinted scaffolds for bone tissue Engineering: State-Of-The-art and Emerging technologies. Front Bioeng Biotechnol. 2022;10:824156.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu P, Bao T, Sun L, Wang Z, Sun J, Peng W, Gan D, Yin G, Liu P, Zhang W-B, Shen J. In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomaterials Sci. 2022;10:781–93.

    Article 
    CAS 

    Google Scholar
     

  • Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of drugs. AAPS PharmSciTech. 2023;24:39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia H, Dong L, Hao M, Wei Y, Duan J, Chen X, Yu L, Li H, Sang Y, Liu H. Osteogenic property regulation of stem cells by a hydroxyapatite 3D-Hybrid Scaffold with Cancellous Bone structure. Front Chem. 2021;9:798299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Y, Qin L, Gong Y, Chen R, Yang Y, Yang W, Cai K. Experimental and theoretical investigations of the influences of one-dimensional hydroxyapatite nanostructures on cytocompatibility. J Biomedical Mater Res Part A. 2021;109:804–13.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Zhou H, Zhu G, Shao C, Pan H, Xu X, Tang R. High efficient multifunctional Ag3PO4 loaded hydroxyapatite nanowires for water treatment. J Hazard Mater. 2015;299:379–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Y-Q, Zhu Y-J, Yu H-P, Lu B-Q. Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. J Colloid Interface Sci. 2018;530:9–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun T-W, Yu W-L, Zhu Y-J, Chen F, Zhang Y-G, Jiang Y-Y, He Y-H. Porous nanocomposite comprising Ultralong Hydroxyapatite nanowires decorated with Zinc-Containing Nanoparticles and Chitosan: synthesis and application in bone defect repair. Chem – Eur J. 2018;24:8809–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of Vascularized Soft tissues. Adv Mater. 2020;32:2003915.

    Article 
    CAS 

    Google Scholar
     

  • Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted gradient-structured scaffold generates anisotropic cartilage with vascularization by pore-size-dependent activation of HIF1α/FAK signaling axis. Nanomed Nanotechnol Biol Med. 2021;37:102426.

    Article 
    CAS 

    Google Scholar
     

  • Chae S, Cho D-W. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater. 2023;156:4–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camarero-Espinosa S, Moroni L. Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nat Commun. 2021;12:1031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J, Zhang S. Delivering proangiogenic factors from 3D-Printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater. 2020;9:2000727.

    Article 
    CAS 

    Google Scholar
     

  • Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Engineering: C. 2018;84:140–7.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Ullah I, Yu K, Zhang W, Zhou J, Sun T, Shi L, Yao S, Chen K, Zhang X, Guo X. Bioactive Sr2+/Fe3 + co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication. 2021;13:035007.

    Article 
    CAS 

    Google Scholar
     

  • Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone. 2018;106:78–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prather AA, Rabinovitz M, Pollock BG, Lotrich FE. Cytokine-induced depression during IFN-α treatment: the role of IL-6 and sleep quality. Brain Behav Immun. 2009;23:1109–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, Liu L, Qiu X, Huang J, Zhou H, et al. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res. 2016;61:317–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng S, Zhou C, Yang H, Li J, Feng Z, Liao L, Li Y. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis–angiogenesis coupling. Front Endocrinol. 2022;13:826660.

    Article 

    Google Scholar
     

  • Zhang J, Jia G, Xue P, Li Z. Melatonin restores osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells and alleviates bone loss through the HGF/PTEN/Wnt/β-catenin axis. Therapeutic Adv Chronic Disease. 2021;12:2040622321995685.

    Article 
    CAS 

    Google Scholar
     

  • Gu C, Zhou Q, Hu X, Ge X, Hou M, Wang W, Liu H, Shi Q, Xu Y, Zhu X, et al. Melatonin rescues the mitochondrial function of bone marrow-derived mesenchymal stem cells and improves the repair of osteoporotic bone defect in ovariectomized rats. J Pineal Res. 2024;76:e12924.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molska A, Nyman AKG, Sofias AM, Kristiansen KA, Hak S, Widerøe M. In vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. Eur J Pharm Biopharm. 2020;152:248–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babu RJ, Dayal P, Singh M. Effect of cyclodextrins on the Complexation and nasal permeation of Melatonin. Drug Delivery. 2008;15:381–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nižić L, Potaś J, Winnicka K, Szekalska M, Erak I, Gretić M, Jug M, Hafner A. Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. Eur J Pharm Sci. 2020;141:105115.

    Article 
    PubMed 

    Google Scholar
     

  • Li Y, Zhao X, Wang L, Liu Y, Wu W, Zhong C, Zhang Q, Yang J. Preparation, characterization and in vitro evaluation of melatonin-loaded porous starch for enhanced bioavailability. Carbohydr Polym. 2018;202:125–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11:3183–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19:209.

    Article 
    CAS 

    Google Scholar
     

  • Tao S-C, Huang J-Y, Gao Y, Li Z-X, Wei Z-Y, Dawes H, Guo S-C. Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioactive Mater. 2021;6:4455–69.

    Article 
    CAS 

    Google Scholar
     

  • Curley N, Levy D, Do MA, Brown A, Stickney Z, Marriott G, Lu B. Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. Nanoscale. 2020;12:12014–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol. 2016;28:57–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svensson S, Palmer M, Svensson J, Johansson A, Engqvist H, Omar O, Thomsen P. Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation. J Mater Science: Mater Med. 2022;33:11.

    CAS 

    Google Scholar
     

  • Huang G-J, Yu H-P, Wang X-L, Ning B-B, Gao J, Shi Y-Q, Zhu Y-J, Duan J-L. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. J Mater Chem B. 2021;9:1277–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Wang H, Luan S, Zhou G. Low-temperature printed hierarchically Porous Induced-Biomineralization Polyaryletherketone Scaffold for bone tissue Engineering. Adv Healthc Mater. 2022;11:e2200977.

    Article 
    PubMed 

    Google Scholar
     

  • Tian G, Pan R, Zhang B, Qu M, Lian B, Jiang H, Gao Z, Wu J. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front Pharmacol. 2019;10:4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun X, Wei J, Lyu J, Bian T, Liu Z, Huang J, Pi F, Li C, Zhong Z. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J Nanobiotechnol. 2019;17:10.

    Article 

    Google Scholar
     

  • Visan KS, Lobb RJ, Ham S, Lima LG, Palma C, Edna CPZ, Wu L-Y, Gowda H, Datta KK, Hartel G, et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles. 2022;11:12266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X-J, Shen Y-S, He M-C, Yang F, Yang P, Pang F-X, He W, Cao Y-M, Wei Q-S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2019;112:108746.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Yang Y, Ju J, Zhang G, Zhang P, Ji P, Jin Q, Cao G, Zuo R, Wang H, et al. Mir-100-5p promotes epidermal stem cell proliferation through Targeting MTMR3 to activate PIP3/AKT and ERK Signaling pathways. Stem Cells Int. 2022;2022:1474273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol. 2002;159:1087–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation effects of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol. 2019;234:1008–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies MJ. Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther. 2021;218:107685.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Chen T, Deng Z, Gao W, Liang T, Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, et al. Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p. Stem Cell Res Ther. 2021;12:150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knani L, Bartolini D, Kechiche S, Tortoioli C, Murdolo G, Moretti M, Messaoudi I, Reiter RJ, Galli F. Melatonin prevents cadmium-induced bone damage: first evidence on an improved osteogenic/adipogenic differentiation balance of mesenchymal stem cells as underlying mechanism. J Pineal Res. 2019;67:e12597.

    Article 
    PubMed 

    Google Scholar
     

  • Yun SP, Han Y-S, Lee JH, Kim SM, Lee SH. Melatonin rescues mesenchymal stem cells from Senescence Induced by the Uremic Toxin -Cresol via inhibiting mTOR-Dependent autophagy. Biomolecules Ther. 2018;26:389–98.

    Article 
    CAS 

    Google Scholar
     

  • Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional relationship between Osteogenesis and Angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21:3242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng J, Wang X, Zhang W, Sun L, Han X, Tong X, Yu L, Ding J, Yu L, Liu Y. Versatile hypoxic extracellular vesicles Laden in an Injectable and Bioactive Hydrogel for Accelerated Bone Regeneration. Adv Funct Mater. 2023;33:2211664.

    Article 
    CAS 

    Google Scholar
     

  • Hsu M-N, Huang K-L, Yu F-J, Lai P-L, Truong AV, Lin M-W, Nguyen NTK, Shen C-C, Hwang S-M, Chang Y-H, Hu Y-C. Coactivation of endogenous Wnt10b and Foxc2 by CRISPR activation enhances BMSC Osteogenesis and promotes calvarial bone regeneration. Mol Ther. 2020;28:441–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Wei S-m, Yan K-x, Gu Y-x, Lai H-c. Qiao S-c: bovine-derived xenografts immobilized with cryopreserved stem cells from human adipose and Dental Pulp tissues promote bone regeneration: a Radiographic and histological study. Front Bioeng Biotechnol. 2021;9:646690.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Reviews Disease Primers. 2021;7:57.

    Article 
    PubMed 

    Google Scholar
     

  • Anada T, Pan C-C, Stahl AM, Mori S, Fukuda J, Suzuki O, Yang Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote Osteogenesis and Angiogenesis. Int J Mol Sci. 2019;20:1096.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing F, Xiang Z, Rommens PM, Ritz U. 3D bioprinting for Vascularized tissue-Engineered Bone Fabrication. Materials. 2020;13:2278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh AC, Zhang Y, Poli L, Hammer N, Roch A, Crimp M, Chatzistavrou X. 3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication. Mater Sci Engineering: C. 2021;118:111516.

    Article 
    CAS 

    Google Scholar
     

  • Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and Polymer leaching techniques for bone tissue engineering. J Biomedical Mater Res Part A. 2014;102:3379–92.

    Article 

    Google Scholar
     

  • Liu X-Y, Chen C, Xu H-H, Zhang Y-s, Zhong L, Hu N, Jia X-L, Wang Y-W, Zhong K-H, Liu C, et al. Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury. Regenerative Biomaterials. 2021;8:rbab047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mou P, Peng H, Zhou L, Li L, Li H, Huang Q. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Int J Nanomed. 2019;14:3331–43.

    Article 
    CAS 

    Google Scholar
     

  • Bisht B, Hope A, Mukherjee A, Paul MK. Advances in the fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng. 2021;49:1128–50.

    Article 
    PubMed 

    Google Scholar
     

  • Yang N, Liu Y. The role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci. 2021;18:3697–707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in growth factor delivery for bone tissue Engineering. Int J Mol Sci. 2021;22:903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Therapy. 2022;7:41.

    Article 
    CAS 

    Google Scholar
     

  • Schilperoort M, Bravenboer N, Lim J, Mletzko K, Busse B, van Ruijven L, Kroon J, Rensen PCN, Kooijman S, Winter EM. Circadian disruption by shifting the light-dark cycle negatively affects bone health in mice. FASEB J. 2020;34:1052–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LLabre JE, Trujillo R, Sroga GE, Figueiro MG, Vashishth D. Circadian rhythm disruption with high-fat diet impairs glycemic control and bone quality. FASEB J. 2021;35:e21786.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu S, Tang Q, Chen G, Lu X, Yin Y, Xie M, Long Y, Zheng W, Guo F, Shao L, et al. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ. 2022;29:874–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Liang J-W, Liao S, Zhao Z-D, Wang Y-X, Mao X-F, Hao S-W, Wang Y-F, Zhu H, Guo B. Melatonin attenuates radiation-induced cortical bone-derived stem cells injury and enhances bone repair in postradiation femoral defect model. Military Med Res. 2021;8:61.

    Article 
    CAS 

    Google Scholar
     

  • Liu Z-J, Ran Y-Y, Qie S-Y, Gong W-J, Gao F-H, Ding Z-T, Xi J-N. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther. 2019;25:1353–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang C-C, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, Gajendrareddy P, Ravindran S. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020;109:182–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang M, Huang C-C, Gajendrareddy P, Lu Y, Shirazi S, Ravindran S, Cooper LF. Extracellular vesicles from TNFα preconditioned MSCs: effects on Immunomodulation and Bone Regeneration. Front Immunol. 2022;13:878194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y. Exosomes derived from mir-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52:e12669.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang G, Li S, Yu K, He B, Hong J, Xu T, Meng J, Ye C, Chen Y, Shi Z, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 2021;128:150–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao C, Qiu P, Li M, Liang K, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio. 2021;12:100142.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, et al. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater. 2022;142:85–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hardeland R. Aging, melatonin, and the Pro- and anti-inflammatory networks. Int J Mol Sci. 2019;20:1223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci. 2014;71:4131–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moisley KM, El-Jawhari JJ, Owston H, Tronci G, Russell SJ, Jones EA, Giannoudis PV. Optimising proliferation and migration of mesenchymal stem cells using platelet products: a rational approach to bone regeneration. J Orthop Res. 2019;37:1329–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You W, Fan L, Duan D, Tian L, Dang X, Wang C, Wang K. Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem. 2014;386:125–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 2019;52:e12688.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Huo M, Wang Y, Xiao L, Wu J, Ma Y, Zhang D, Lang X, Wang X. A tailored bioactive 3D porous poly(lactic-acid)-exosome scaffold with osteo-immunomodulatory and osteogenic differentiation properties. J Biol Eng. 2022;16:22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su N, Hao Y, Wang F, Hou W, Chen H, Luo Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Sci Adv. 2021;7:eabf7207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, Li L, Xu S, Xia Y. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis. ACS Appl Mater Interfaces. 2021;13:18472–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Zhu H, Cheng L, Zhao Y, Chen X, Li J, Xv X, Xiao Z, Li W, Pan J, et al. TCP/PLGA composite scaffold loaded rapamycin in situ enhances lumbar fusion by regulating osteoblast and osteoclast activity. J Tissue Eng Regen Med. 2021;15:475–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Z-L, Zhao Y, Miao F, Wu M, Xia H-F, Chen Z-K, Liu H-M, Zhao Y-F, Chen G. In situ membrane Biotinylation enables the direct labeling and accurate kinetic analysis of small extracellular vesicles in circulation. Anal Chem. 2021;93:10862–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Discover more from TrendyShopToBuy

    Subscribe to get the latest posts sent to your email.

    Latest articles

    spot_imgspot_img

    Related articles

    Leave a Reply

    spot_imgspot_img

    Discover more from TrendyShopToBuy

    Subscribe now to keep reading and get access to the full archive.

    Continue reading