Autophagosomes coated in situ with nanodots act as personalized cancer vaccines


  • Kaiser, J. Personalized tumour vaccines keep cancer in check. Science 356, 122 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pulendran, B. & Davis, M. M. The science and medicine of human immunology. Science 369, eaay4014 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ci, T. et al. Cryo-shocked cancer cells for targeted drug delivery and vaccination. Sci. Adv. 6, eabc3013 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv. Mater. 32, e2001808 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nat. Biomed. Eng. 6, 19–31 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harari, A., Graciotti, M., Bassani-Sternberg, M. & Kandalaft, L. E. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat. Rev. Drug Discov. 19, 635–652 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Marar, C., Starich, B. & Wirtz, D. Extracellular vesicles in immunomodulation and tumor progression. Nat. Immunol. 22, 560–570 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roth, G. A. et al. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 7, 174–195 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ma, L. et al. Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells. Adv. Mater. 33, e2104849 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, X., Cui, H., Zhang, W., Li, Z. & Gao, J. Engineered tumor cell-derived vaccines against cancer: the art of combating poison with poison. Bioact. Mater. 22, 491–517 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Page, D. B. et al. Glimpse into the future: harnessing autophagy to promote antitumour immunity with the DRibbles vaccine. J. Immunother. Cancer 4, 25 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, T. et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8, 350–363 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yi, Y. et al. Autophagy-assisted antigen cross-presentation: autophagosome as the argo of shared tumour-specific antigens and DAMPs. Oncoimmunology 1, 976–978 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, W. et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 4, e966 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • MacNabb, B. W. et al. Dendritic cells can prime antitumour CD8+ T cell responses through major histocompatibility complex cross-dressing. Immunity 55, 982–997.e8 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dersh, D., Holly, J. & Yewdell, J. W. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin. Cancer Res. 17, 7047–7057 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ye, Z. et al. Manipulation of PD-L1 endosomal trafficking promotes anticancer immunity. Adv. Sci. 10, e2206411 (2022).

    Article 

    Google Scholar
     

  • Raudenska, M., Balvan, J. & Masarik, M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol. Cancer 20, 140 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, Z. F. et al. Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J. Immunother. Cancer 6, 151 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanborn, R. E. et al. A pilot study of an autologous tumor-derived autophagosome vaccine with docetaxel in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer 5, 103 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diao, L. & Liu, M. Rethinking antigen source: cancer vaccines based on whole tumor cell/tissue lysate or whole tumor cell. Adv. Sci. 10, e2300121 (2023).

    Article 

    Google Scholar
     

  • Wang, H. et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl Acad. Sci. USA 112, 7015–7020 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun, H. Q. et al. PI4P-dependent targeting of ATG14 to mature autophagosomes. Biochemistry 61, 722–729 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cebollero, E. et al. Phosphatidylinositol-3-phosphate clearance plays a key role in autophagosome completion. Curr. Biol. 22, 1545–1553 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martens, S., Nakamura, S. & Yoshimori, T. Phospholipids in autophagosome formation and fusion. J. Mol. Biol. 428, 4819–4827 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, Y. G., Codogno, P. & Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shinoda, S. et al. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 12, RP92189 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laczkó-Dobos, H. et al. PtdIns4P is required for the autophagosomal recruitment of STX17 (syntaxin 17) to promote lysosomal fusion. Autophagy 20, 1639–1650 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, D. et al. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45, 629–641 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nakamura, S. & Yoshimori, T. New insights into autophagosome–lysosome fusion. J. Cell Sci. 130, 1209–1216 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Johnson, D., Qiao, Z., Uwadiunor, E. & Djire, A. Holdups in nitride MXene’s development and limitations in advancing the field of MXene. Small 18, e2106129 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Debnath, J., Gammoh, N. & Ryan, K. M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 24, 560–575 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Clarke, A. J. & Simon, A. K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 19, 170–183 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. In situ growth of nanoantioxidants on cellular vesicles for efficient reactive oxygen species elimination in acute inflammatory diseases. Nano Today 40, 101282 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murshid, A., Gong, J., Stevenson, M. A. & Calderwood, S. K. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Rev. Vaccines 10, 1553–1568 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lhuillier, C. et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J. Clin. Invest. 131, e138740 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qin, H. et al. Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv. Mater. 33, e2006007 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine delivery. Adv. Mater. 33, e2100106 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17, 996–1002 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gou, S. et al. Engineered nanovaccine targeting Clec9a+ dendritic cells remarkably enhances the cancer immunotherapy effects of STING agonist. Nano Lett. 21, 9939–9950 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu, J. et al. A general strategy towards personalized nanovaccines based on fluoropolymers for postsurgical cancer immunotherapy. Nat. Nanotechnol. 15, 1043–1052 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. A minimalist binary vaccine carrier for personalized postoperative cancer vaccine therapy. Adv. Mater. 34, e2109254 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, Z. J., Zhuo, M. J., Li, M. S., Wang, J. Y. & Zhou, Y. C. Synthesis and microstructure of layered-ternary Ti2AlN ceramic. Scr. Mater. 56, 1115–1118 (2007).

    Article 
    CAS 

    Google Scholar
     


  • Discover more from TrendyShopToBuy

    Subscribe to get the latest posts sent to your email.

    Latest articles

    spot_imgspot_img

    Related articles

    Leave a Reply

    spot_imgspot_img

    Discover more from TrendyShopToBuy

    Subscribe now to keep reading and get access to the full archive.

    Continue reading