Johnson ZM, Yuan Y, Li X, Jashashvili T, Jamieson M, Urata M, Chen Y, Chai Y. Mesenchymal stem cells and three-dimensional-osteoconductive Scaffold regenerate calvarial bone in critical size defects in Swine. Stem Cells Translational Med. 2021;10:1170–83.
Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ. Autograft, Allograft, and bone graft substitutes: clinical evidence and indications for Use in the setting of Orthopaedic Trauma surgery. J Orthop Trauma. 2019;33:203–13.
Regenerative Approaches for the Treatment of Large Bone Defects. Tissue Eng Part B: Reviews. 2021;27:539–47.
Mohammadi H, Sepantafar M, Muhamad N, Bakar Sulong A. How does Scaffold Porosity Conduct Bone tissue regeneration? Adv Eng Mater. 2021;23:2100463.
Hasan A, Byambaa B, Morshed M, Cheikh MI, Shakoor RA, Mustafy T, Marei HE. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med. 2018;12:1448–68.
Yu A, Zhang C, Xu W, Zhang Y, Tian S, Liu B, Zhang J, He A, Su B, Lu X. Additive manufacturing of multi-morphology graded titanium scaffolds for bone implant applications. J Mater Sci Technol. 2023;139:47–58.
Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An overview of translational research in bone graft biomaterials. J Biomater Sci Polym Ed. 2023;34:497–540.
Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D bioprinted scaffolds for bone tissue Engineering: State-Of-The-art and Emerging technologies. Front Bioeng Biotechnol. 2022;10:824156.
Liu P, Bao T, Sun L, Wang Z, Sun J, Peng W, Gan D, Yin G, Liu P, Zhang W-B, Shen J. In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomaterials Sci. 2022;10:781–93.
Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–41.
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of drugs. AAPS PharmSciTech. 2023;24:39.
Xia H, Dong L, Hao M, Wei Y, Duan J, Chen X, Yu L, Li H, Sang Y, Liu H. Osteogenic property regulation of stem cells by a hydroxyapatite 3D-Hybrid Scaffold with Cancellous Bone structure. Front Chem. 2021;9:798299.
Jia Y, Qin L, Gong Y, Chen R, Yang Y, Yang W, Cai K. Experimental and theoretical investigations of the influences of one-dimensional hydroxyapatite nanostructures on cytocompatibility. J Biomedical Mater Res Part A. 2021;109:804–13.
Li Y, Zhou H, Zhu G, Shao C, Pan H, Xu X, Tang R. High efficient multifunctional Ag3PO4 loaded hydroxyapatite nanowires for water treatment. J Hazard Mater. 2015;299:379–87.
Shen Y-Q, Zhu Y-J, Yu H-P, Lu B-Q. Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. J Colloid Interface Sci. 2018;530:9–15.
Sun T-W, Yu W-L, Zhu Y-J, Chen F, Zhang Y-G, Jiang Y-Y, He Y-H. Porous nanocomposite comprising Ultralong Hydroxyapatite nanowires decorated with Zinc-Containing Nanoparticles and Chitosan: synthesis and application in bone defect repair. Chem – Eur J. 2018;24:8809–21.
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.
Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of Vascularized Soft tissues. Adv Mater. 2020;32:2003915.
Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365:482–7.
Sun Y, Wu Q, Zhang Y, Dai K, Wei Y. 3D-bioprinted gradient-structured scaffold generates anisotropic cartilage with vascularization by pore-size-dependent activation of HIF1α/FAK signaling axis. Nanomed Nanotechnol Biol Med. 2021;37:102426.
Chae S, Cho D-W. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomater. 2023;156:4–20.
Camarero-Espinosa S, Moroni L. Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nat Commun. 2021;12:1031.
Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J, Zhang S. Delivering proangiogenic factors from 3D-Printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater. 2020;9:2000727.
Lee H, Yang GH, Kim M, Lee J, Huh J, Kim G. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater Sci Engineering: C. 2018;84:140–7.
Yang L, Ullah I, Yu K, Zhang W, Zhou J, Sun T, Shi L, Yao S, Chen K, Zhang X, Guo X. Bioactive Sr2+/Fe3 + co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication. 2021;13:035007.
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133–43.
Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone. 2018;106:78–89.
Prather AA, Rabinovitz M, Pollock BG, Lotrich FE. Cytokine-induced depression during IFN-α treatment: the role of IL-6 and sleep quality. Brain Behav Immun. 2009;23:1109–16.
Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, Liu L, Qiu X, Huang J, Zhou H, et al. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res. 2016;61:317–27.
Zheng S, Zhou C, Yang H, Li J, Feng Z, Liao L, Li Y. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis–angiogenesis coupling. Front Endocrinol. 2022;13:826660.
Zhang J, Jia G, Xue P, Li Z. Melatonin restores osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells and alleviates bone loss through the HGF/PTEN/Wnt/β-catenin axis. Therapeutic Adv Chronic Disease. 2021;12:2040622321995685.
Gu C, Zhou Q, Hu X, Ge X, Hou M, Wang W, Liu H, Shi Q, Xu Y, Zhu X, et al. Melatonin rescues the mitochondrial function of bone marrow-derived mesenchymal stem cells and improves the repair of osteoporotic bone defect in ovariectomized rats. J Pineal Res. 2024;76:e12924.
Molska A, Nyman AKG, Sofias AM, Kristiansen KA, Hak S, Widerøe M. In vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. Eur J Pharm Biopharm. 2020;152:248–56.
Babu RJ, Dayal P, Singh M. Effect of cyclodextrins on the Complexation and nasal permeation of Melatonin. Drug Delivery. 2008;15:381–8.
Nižić L, Potaś J, Winnicka K, Szekalska M, Erak I, Gretić M, Jug M, Hafner A. Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. Eur J Pharm Sci. 2020;141:105115.
Li Y, Zhao X, Wang L, Liu Y, Wu W, Zhong C, Zhang Q, Yang J. Preparation, characterization and in vitro evaluation of melatonin-loaded porous starch for enhanced bioavailability. Carbohydr Polym. 2018;202:125–33.
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11:3183–95.
Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19:209.
Tao S-C, Huang J-Y, Gao Y, Li Z-X, Wei Z-Y, Dawes H, Guo S-C. Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioactive Mater. 2021;6:4455–69.
Curley N, Levy D, Do MA, Brown A, Stickney Z, Marriott G, Lu B. Sequential deletion of CD63 identifies topologically distinct scaffolds for surface engineering of exosomes in living human cells. Nanoscale. 2020;12:12014–26.
Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol. 2016;28:57–68.
Svensson S, Palmer M, Svensson J, Johansson A, Engqvist H, Omar O, Thomsen P. Monocytes and pyrophosphate promote mesenchymal stem cell viability and early osteogenic differentiation. J Mater Science: Mater Med. 2022;33:11.
Huang G-J, Yu H-P, Wang X-L, Ning B-B, Gao J, Shi Y-Q, Zhu Y-J, Duan J-L. Highly porous and elastic aerogel based on ultralong hydroxyapatite nanowires for high-performance bone regeneration and neovascularization. J Mater Chem B. 2021;9:1277–87.
Gao X, Wang H, Luan S, Zhou G. Low-temperature printed hierarchically Porous Induced-Biomineralization Polyaryletherketone Scaffold for bone tissue Engineering. Adv Healthc Mater. 2022;11:e2200977.
Tian G, Pan R, Zhang B, Qu M, Lian B, Jiang H, Gao Z, Wu J. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front Pharmacol. 2019;10:4.
Sun X, Wei J, Lyu J, Bian T, Liu Z, Huang J, Pi F, Li C, Zhong Z. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J Nanobiotechnol. 2019;17:10.
Visan KS, Lobb RJ, Ham S, Lima LG, Palma C, Edna CPZ, Wu L-Y, Gowda H, Datta KK, Hartel G, et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles. 2022;11:12266.
Chen X-J, Shen Y-S, He M-C, Yang F, Yang P, Pang F-X, He W, Cao Y-M, Wei Q-S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed Pharmacother. 2019;112:108746.
Liu Z, Yang Y, Ju J, Zhang G, Zhang P, Ji P, Jin Q, Cao G, Zuo R, Wang H, et al. Mir-100-5p promotes epidermal stem cell proliferation through Targeting MTMR3 to activate PIP3/AKT and ERK Signaling pathways. Stem Cells Int. 2022;2022:1474273.
Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J Cell Biol. 2002;159:1087–96.
Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation effects of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol. 2019;234:1008–15.
Davies MJ. Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther. 2021;218:107685.
Wang X, Chen T, Deng Z, Gao W, Liang T, Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, et al. Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p. Stem Cell Res Ther. 2021;12:150.
Knani L, Bartolini D, Kechiche S, Tortoioli C, Murdolo G, Moretti M, Messaoudi I, Reiter RJ, Galli F. Melatonin prevents cadmium-induced bone damage: first evidence on an improved osteogenic/adipogenic differentiation balance of mesenchymal stem cells as underlying mechanism. J Pineal Res. 2019;67:e12597.
Yun SP, Han Y-S, Lee JH, Kim SM, Lee SH. Melatonin rescues mesenchymal stem cells from Senescence Induced by the Uremic Toxin -Cresol via inhibiting mTOR-Dependent autophagy. Biomolecules Ther. 2018;26:389–98.
Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional relationship between Osteogenesis and Angiogenesis in tissue regeneration. Int J Mol Sci. 2020;21:3242.
Deng J, Wang X, Zhang W, Sun L, Han X, Tong X, Yu L, Ding J, Yu L, Liu Y. Versatile hypoxic extracellular vesicles Laden in an Injectable and Bioactive Hydrogel for Accelerated Bone Regeneration. Adv Funct Mater. 2023;33:2211664.
Hsu M-N, Huang K-L, Yu F-J, Lai P-L, Truong AV, Lin M-W, Nguyen NTK, Shen C-C, Hwang S-M, Chang Y-H, Hu Y-C. Coactivation of endogenous Wnt10b and Foxc2 by CRISPR activation enhances BMSC Osteogenesis and promotes calvarial bone regeneration. Mol Ther. 2020;28:441–51.
Zhu Y, Wei S-m, Yan K-x, Gu Y-x, Lai H-c. Qiao S-c: bovine-derived xenografts immobilized with cryopreserved stem cells from human adipose and Dental Pulp tissues promote bone regeneration: a Radiographic and histological study. Front Bioeng Biotechnol. 2021;9:646690.
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Reviews Disease Primers. 2021;7:57.
Anada T, Pan C-C, Stahl AM, Mori S, Fukuda J, Suzuki O, Yang Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote Osteogenesis and Angiogenesis. Int J Mol Sci. 2019;20:1096.
Xing F, Xiang Z, Rommens PM, Ritz U. 3D bioprinting for Vascularized tissue-Engineered Bone Fabrication. Materials. 2020;13:2278.
Marsh AC, Zhang Y, Poli L, Hammer N, Roch A, Crimp M, Chatzistavrou X. 3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication. Mater Sci Engineering: C. 2021;118:111516.
Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and Polymer leaching techniques for bone tissue engineering. J Biomedical Mater Res Part A. 2014;102:3379–92.
Liu X-Y, Chen C, Xu H-H, Zhang Y-s, Zhong L, Hu N, Jia X-L, Wang Y-W, Zhong K-H, Liu C, et al. Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury. Regenerative Biomaterials. 2021;8:rbab047.
Mou P, Peng H, Zhou L, Li L, Li H, Huang Q. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Int J Nanomed. 2019;14:3331–43.
Bisht B, Hope A, Mukherjee A, Paul MK. Advances in the fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng. 2021;49:1128–50.
Yang N, Liu Y. The role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci. 2021;18:3697–707.
Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in growth factor delivery for bone tissue Engineering. Int J Mol Sci. 2021;22:903.
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Di Cesare Mannelli L, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Therapy. 2022;7:41.
Schilperoort M, Bravenboer N, Lim J, Mletzko K, Busse B, van Ruijven L, Kroon J, Rensen PCN, Kooijman S, Winter EM. Circadian disruption by shifting the light-dark cycle negatively affects bone health in mice. FASEB J. 2020;34:1052–64.
LLabre JE, Trujillo R, Sroga GE, Figueiro MG, Vashishth D. Circadian rhythm disruption with high-fat diet impairs glycemic control and bone quality. FASEB J. 2021;35:e21786.
Yu S, Tang Q, Chen G, Lu X, Yin Y, Xie M, Long Y, Zheng W, Guo F, Shao L, et al. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ. 2022;29:874–87.
Hu W, Liang J-W, Liao S, Zhao Z-D, Wang Y-X, Mao X-F, Hao S-W, Wang Y-F, Zhu H, Guo B. Melatonin attenuates radiation-induced cortical bone-derived stem cells injury and enhances bone repair in postradiation femoral defect model. Military Med Res. 2021;8:61.
Liu Z-J, Ran Y-Y, Qie S-Y, Gong W-J, Gao F-H, Ding Z-T, Xi J-N. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther. 2019;25:1353–62.
Huang C-C, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, Gajendrareddy P, Ravindran S. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020;109:182–94.
Kang M, Huang C-C, Gajendrareddy P, Lu Y, Shirazi S, Ravindran S, Cooper LF. Extracellular vesicles from TNFα preconditioned MSCs: effects on Immunomodulation and Bone Regeneration. Front Immunol. 2022;13:878194.
Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y. Exosomes derived from mir-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019;52:e12669.
Jiang G, Li S, Yu K, He B, Hong J, Xu T, Meng J, Ye C, Chen Y, Shi Z, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 2021;128:150–62.
Zhao C, Qiu P, Li M, Liang K, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio. 2021;12:100142.
Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, et al. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater. 2022;142:85–98.
Hardeland R. Aging, melatonin, and the Pro- and anti-inflammatory networks. Int J Mol Sci. 2019;20:1223.
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci. 2014;71:4131–48.
Moisley KM, El-Jawhari JJ, Owston H, Tronci G, Russell SJ, Jones EA, Giannoudis PV. Optimising proliferation and migration of mesenchymal stem cells using platelet products: a rational approach to bone regeneration. J Orthop Res. 2019;37:1329–38.
You W, Fan L, Duan D, Tian L, Dang X, Wang C, Wang K. Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem. 2014;386:125–34.
Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 2019;52:e12688.
Zhang Y, Huo M, Wang Y, Xiao L, Wu J, Ma Y, Zhang D, Lang X, Wang X. A tailored bioactive 3D porous poly(lactic-acid)-exosome scaffold with osteo-immunomodulatory and osteogenic differentiation properties. J Biol Eng. 2022;16:22.
Su N, Hao Y, Wang F, Hou W, Chen H, Luo Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Sci Adv. 2021;7:eabf7207.
Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, Li L, Xu S, Xia Y. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis. ACS Appl Mater Interfaces. 2021;13:18472–87.
Liu H, Zhu H, Cheng L, Zhao Y, Chen X, Li J, Xv X, Xiao Z, Li W, Pan J, et al. TCP/PLGA composite scaffold loaded rapamycin in situ enhances lumbar fusion by regulating osteoblast and osteoclast activity. J Tissue Eng Regen Med. 2021;15:475–86.
Yu Z-L, Zhao Y, Miao F, Wu M, Xia H-F, Chen Z-K, Liu H-M, Zhao Y-F, Chen G. In situ membrane Biotinylation enables the direct labeling and accurate kinetic analysis of small extracellular vesicles in circulation. Anal Chem. 2021;93:10862–70.
Discover more from TrendyShopToBuy
Subscribe to get the latest posts sent to your email.